Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Microbiol Spectr ; 11(3): e0020623, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2295330

RESUMEN

Carryover contamination during amplicon sequencing workflow (AMP-Seq) put the accuracy of the high-throughput detection for pathogens at risk. The purpose of this study is to develop a carryover contaminations-controlled AMP-Seq (ccAMP-Seq) workflow to enable accurate qualitative and quantitative detection for pathogens. By using the AMP-Seq workflow to detect SARS-CoV-2, Aerosols, reagents and pipettes were identified as potential sources of contaminations and ccAMP-Seq was then developed. ccAMP-Seq used filter tips and physically isolation of experimental steps to avoid cross contamination, synthetic DNA spike-ins to compete with contaminations and quantify SARS-CoV-2, dUTP/uracil DNA glycosylase system to digest the carryover contaminations, and a new data analysis procedure to remove the sequencing reads from contaminations. Compared to AMP-Seq, the contamination level of ccAMP-Seq was at least 22-folds lower and the detection limit was also about an order of magnitude lower-as low as one copy/reaction. By testing the dilution series of SARS-CoV-2 nucleic acid standard, ccAMP-Seq showed 100% sensitivity and specificity. The high sensitivity of ccAMP-Seq was further confirmed by the detection of SARS-CoV-2 from 62 clinical samples. The consistency between qPCR and ccAMP-Seq was 100% for all the 53 qPCR-positive clinical samples. Seven qPCR-negative clinical samples were found to be positive by ccAMP-Seq, which was confirmed by extra qPCR tests on subsequent samples from the same patients. This study presents a carryover contamination-controlled, accurate qualitative and quantitative amplicon sequencing workflow that addresses the critical problem of pathogen detection for infectious diseases. IMPORTANCE Accuracy, a key indicator of pathogen detection technology, is compromised by carryover contamination in the amplicon sequencing workflow. Taking the detection of SARS-CoV-2 as case, this study presents a new carryover contamination-controlled amplicon sequencing workflow. The new workflow significantly reduces the degree of contamination in the workflow, thereby significantly improving the accuracy and sensitivity of the SARS-CoV-2 detection and empowering the ability of quantitative detection. More importantly, the use of the new workflow is simple and economical. Therefore, the results of this study can be easily applied to other microorganism, which has great significance for improving the detection level of microorganism.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Flujo de Trabajo , Sensibilidad y Especificidad , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Signal Transduct Target Ther ; 6(1): 271, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1315588

RESUMEN

COVID-19 vaccines from multiple manufacturers are needed to cope with the problem of insufficient supply. We did two single-center, randomised, double-blind, placebo-controlled phase 1 and phase 2 trials to assess the safety, tolerability and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older in China. Eligible participants were enrolled, the ratio of candidate vaccine and placebo within each dose group was 3:1 (phase 1) or 5:1 (phase 2). From August 28, 2020, 168 participants were sequentially enrolled and randomly assigned to receive the low dose vaccine, high dose vaccine or placebo with the schedule of 0, 28 days or 0, 14, 28 days in phase 1 trial. From November 18, 2020, 960 participants were randomly assigned to receive the low dose vaccine, high dose vaccine or placebo with the schedule of 0, 21 days or 0, 14, 28 days in phase 2 trial. The most common solicited injection site adverse reaction within 7 days in both trials was pain. The most common solicited systematic adverse reactions within 7 days were fatigue, cough, sore throat, fever and headache. ELISA antibodies and neutralising antibodies increased at 14 days, and peaked at 28 days (phase 1) or 30 days (phase 2) after the last dose vaccination. The GMTs of neutralising antibody against live SARS-CoV-2 at 28 days or 30 days after the last dose vaccination were highest in the adult high dose group (0, 14, 28 days), with 102.9 (95% CI 61.9-171.2) and 102.6 (95% CI 75.2-140.1) in phase 1 and phase 2 trials, respectively. Specific T-cell response peaked at 14 days after the last dose vaccination in phase 1 trial. This vaccine is safe, and induced significant immune responses after three doses of vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Adolescente , Adulto , COVID-19/sangre , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA